Pointed modular tensor category

主题:Pointed modular tensor category
主要内容:A modular tensor category is pointed if every simple object is a simple current. We show that any pointed modular tensor category is equivalent to the module category of a lattice vertex operator algebra. Moreover, if the pointed modular tensor category C is the module category of a twisted Drinfeld double associated to a finite abelian group G and a 3-cocycle with coefficients in U(1), then there exists a selfdual positive definite even lattice L such that G can be realized an automorphism group of lattice vertex operator algebra $V_L,$ $V_L^G$ is also a lattice vertex operator algebra and C is equivalent to the module category of $V_L^G.$ This is a joint work with S. Ng and L. Ren.
专家姓名:董崇英
工作单位:美国加州大学Santa Cruz 分校
专长和学术成就:主要从事无穷维李代数和顶点算子代数研究,在顶点算子代数(Vertex operator algebras)、Orbifold理论以及广义月光(Generalized moonshine)等方面的研究做出了令世界数学界交口称赞的工作。
专家简介:董崇英, 美国加州大学Santa Cruz 分校教授。主持多项美国国家科学基金,已在国际数学杂志上发表SCI论文一百多篇,包括国际著名数学杂志《Acta Math.》,《Duke Math. J.》,《Comm. Math. Phys.》,《Adv. Math.》等,在国际同行中具有重要影响,得到包括fields奖获得者Drinfeld、 Zelmanov和Borcherds以及著名数学家如Beilinson和V.Kac等人的重要引用。
时间:2021-06-27 09:00:00
地点:海丰国际报告厅

( 讲座具体信息以数字平台通知为准!)

扫码分享本页面
扫码分享本页面